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ABSTRACT

The impedance and the radiation field of a short antenna, which
consists of two spherical conductors excited through very thin wires
in phase opposition, is calculated. 1In the calculations the pressure
tensor is replaced by a scalar pressure. A discontinuous model of the
ion sheath is used.

The losses due to the radiation of electromagnetic and electron-
acoustic waves are calculated and are expressed in terms of equivalent
series resistances., The operation of resonance probes is discussed.
It is shown that their resonant frequency is well below the electron
plasma frequency if the probe radius is much larger than the Debye
length. The significance of this result to both past and future
ionospheric rocket probe experiments is pointed out. The limitations

of the present treatment are discussed.




The Interaction of an Antenna with a Plasma and

the Theory of Resonance Probes

1. Introduction

It is customary in the theory of antennas embedded in a plasma to
treat the plasma as a dielectric. In its most general form the dielectric
constant of the plasma would be a tensor with complex elements; in the
absence of an external magnetic field a scalar dielectric constant would
be sufficient. This type of approach is known to be, at its best, only
an approximation (c.f., for example Salpeter and Makinson 1949). The
correct procedure would be the solution of a combination of the Boltzmann
equation with Maxwell's equations. Unfortunately this path is beset
with almost insuparable difficulties,

A compromise offers itself in the form of the so-called hydrodynamic
approximation in which the pressure tensor of a plasma is replaced by
a scalar pressure (Spitzer 1962; p.24). 1In this paper the problem of
a spherical antenna (or more correctly two spheres excited in phase
opposition through very thin wires) is treated by the application of
the hydrodynamic approximation to a relatively crude model of the plasma
sheath. Although this type of treatment neglects such effects as Landau
damping, it is believed to describe most of the essential aspects of
the interaction between the antenna and the plasma. For other applications
of the same type of treatment the reader is referred to papers by Gould
(1959), Fejer (1963), and Nickel, Parker, and Gould (1963). The present
analysis and its conclusions are entirely different from those of Whale

(1963) who also treated the excitation of electron-acoustic waves by




introducing the concept of an isotropic pressure. Whale assumed the
existence of interaction between the fluctuating quasi-electrostatic
field and the electron-acoustic waves throughout the uniform plasma.

In the present treatment the only interaction is taken to occur at

the inner boundary (in reality in the sheath). Within the uniform
plasma the electron-acoustic wave and the electromagnetic wave (or in
the present limit the quasi-electrostatic field) propagate independently
(c.f., for example Ginzburg 1961) and therefore cannot interact in terms

of the hydrodynamic approximation.

2. The Excitation of Electron-Acoustic Waves

It is assumed that the unperturbed electron concentration is zero
for r«<. R and N for r > R. The distance r is measured from the origin
of a coordinate system. This is admittedly a rather artificial model
of the unperturbed ion sheath. It effectively assumes an abrupt

potential barrier (this could be visualized as a hypothetical double-

layer formed from infinitely heavy positive and negative ions) at r R
which prevents the penetration of electrons inside the sphere at r = R,

It is clear that the radial component of the mean electron velocity must
vanish at r = R. Immediately inside the sheath there is assumed to be

a spherical conductor whose (quasi-electrostatic) perturbation potential

is taken to be a harmonic function of the time. (In principle the

radius of the conductor could be taken as smaller than R without essentially

modifying the analysis; this will not be done here.) Since there is

no mean radial motion of the electrons at r = R, there is no fluctuating
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charged surface layer there and therefore both the perturbation potential
and its normal derivative must be continuous at r = R. Inside the

plasma the equation
mNowst= Nepl/- YK Tyn M

is taken to be valid where m is the mass, e the absolute value of the
charge, N the unperturbed number density and n the perturhation in

the number density of electrons (factors e '@t

are taken for granted in
n and in V) K is Boltzmann's constant, T is the temperature, and where
the ratio Z,of the specific heats is taken as 3 (Spitzer 1962). A

combination of the divergence of equation (l) with the equation of

continuity (satisfied by the velocity v of the electron gas)

7.(Ny)=—ansot 2)

leads to

925L ﬁVé 37«/77’ <
512 +--—_ l - Nl E7 )

A combination of equation (3) and Poisson's equation in spherical

coordinates and with spherical symmetry:

et F dr =T @

leads to

NV"ZYL: .007“:" +'/f 577":0(’% (5)

4
where dz= (QJNE‘Q)/%LL‘Z Q)N =(EZA//é;m)ais the electron plasma
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frequency and Lb'=:(57(7;4ﬁ) is the velocity of electron-acoustic waves

in the high frequency limit (G):$>Qﬁ)-
The general solution, which vanishes at infinity, of the differential

equations (4) and (5) has the form

n= G ©

€ Q 7

V=5 + 22 @

o o
where that part of the solution which is associated with the constant Cl’
describes an electron-acoustic wave, whereas the part associated with 02
describes a quasi-electrostatic field (the so-called induction field)
which is a good approximation to the electromagnetic wave field within
distances very much shorter than a wave length from the antenna.

The boundary condition v = 0 at r = R yield with the aid of
equation (1)
( 2 (;(V = 81/(/ C/%)
8
“V d¥ie-r &, drlu-R ®)
Substitution of n and V from equations (6) and (7) into equation (8)
leads to the relation
Z w? —o(R
u
C-—2 %2 —— (I+dR)e ©)
2 & &l(wfw)
N
Substitution of C2 from equation (9) into equations (6) and (7) leads to
the following relationship between the perturbation in the number density
and the perturbation potential V at r = R:

n(R) & Iy w® K
V(R ew? (j w(w )3

(10)
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Similarly, the effective, complex capacity of the conductor, defined
here as the ratio of the charge on the conductor to the potential V(R)
of the conductor is given by :
C' ~RfMﬁ_4 F /‘fFM:/(CUNQ‘C&Jz)Z
AV L G T A

Equations (6), (7), (9), (10), and (11) represent the main results

(1)

of this paper and a discussion of their significance follows here.

‘ =l
Equation (11) may also be used to calculate the impedance ;Z:f/'z {;Q)C;;{)
of the antenna. The energy loss due to the radiation of electromagnetic
waves has not as yet been included in the analysis; this will be done in
a subsequent part of the present paper. The resistive part of the

impedance Ze represents only the energy loss due to the "radiation"

ff

of electron-acoustic waves.

it is convenient to express the impedance Zeff as a function of
Vi
the parameters [ — (4WE;7ﬁU

C 1o, -l L
radius R), 9= l\ﬂ,QW(the ratio of the radius R to &% times the Debye

N
) (the free space reactance of a sphere of

length, and V’=‘&J/épw (the ratio of the frequency to the electron
plasma frequency). The result is
7 - -yw_
ff s (1-¥Y?

It is clear from equation (12) that zZ,

4
2

(12)

£f is pure imaginary for
/

94< / oer%<Zox. The absence of a loss term is explained in this case
by the absence of propagating electron-acoustic waves. It may be seen

from equation (12) that the impedance becomes infinitely high at the

plasma frequency and that the impedance vanishes at the frequency where




2 < -4
f\"— ) /'__. Z’_
‘ SSL L/ y/) -Cj . More will be said about the significance
of this frequency later. At very low frequencies Zeff = - iy/(l +5)_1

and thus the impedance is smaller than the free space impedance by a
factor (1 +u§)_l. It is understandable that the effective capacity of
the sphere is larger at low frequencies than the free space capacity
because the alternating electric field does not extend to infinity but
is confined to within the plasma sheath which in the case of large '{
is much smaller than the radius. Figure 1 shows for <" the ratio
of the imaginary part of Zeff (the real part is zero for ¥~= 1) to the
magnitude }/ of the free space reactance as a function of the ratio
u/:?GJ//chf of the frequency to the electron plasma frequency for
different values of the ratio A‘ of the radius to )’i Debye lengthy The
curve for<g’= 92 represents the well-known approximation in which thermal
motions are neglected and the plasma is treated as a dielectric with an
effective dielectric constant fc(/ —C)N‘)/wj
Fory’>J it is convenient to write equation (12) in the form
1
oo (¥=1) > L, Y I,
et SEFED Ty g2 ()
Figure 1 also shows the real and the imaginary parts of Ze for

ff .
(in units of}/ ) as a function of V/, for different values of é; .

(13)

The case of<§:=00 again represents the approximation in which thermal
motions are neglected and the plasma is regarded as a dielectric. The
curves of Fig. 1 show the presence of a resistive component of the

impedance for finite values ofeg . The resistive, ohmical component

represents the energy loss caused by the generation of electron-acoustic
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waves.

3. The Radiation of Electromagnetic Waves by Two Spherical Conductors

Excited in Antiphase

The analysis of this paper can be extended to include radiation
losses due to electromagnetic waves. The analysis of electromagnetic
radiation by spheres oscillating in antiphase is of course somewhat
artificial because in practice antennas resemblecylindrical conductors,
rather than two spherical conductors excited in antiphase through thin
wires whose capacity is neglected here. It is, however, relatively
simple to extend the present analysis to cylindrical conductors, at
least in an approximate manner; this extension whose results may be
expressed in terms of Bessel functions, is not carried out in the
present paper. The analysis of spheres oscillating in antiphase is
considerably simpler and it illustrates the nature of the problem
rather well.

If the distance D of the two spheres is much smaller than the
electromagnetic wave length (and at the same time R <& D) then the
quasi-electrostatic field at a distance r >>> D on the line connecting
the spheres is ZCZD/r3, where Cz/r is that part of the potential given
by equation (7) which could be regarded as an approximation to the
radiation field of a spherical radiator at distances much smaller than
the wave length. At distances much longer than a wave length and in
the plane that perpendicularly bisects the line connecting the two

spheres, the magnitude E of the radiation electric field of the dipole




antenna is then given by
E-CDAA-LDAGu)E]
The radiation magnetic field H is given by
H=(c, C;D/m>[(a)2‘w,\,z) 3/%60_7 (15)

where k is the wave number and ¢ is the velocity of electromagnetic
waves in vacuum. Equations (15) and (16) were derived by fitting the
quasi-electrostatic dipole field to the radiation field of a dipole
(Stratton 1941) in a medium with a dielectric constant £a(i1j’&h52i52
Equations (6), (7), and (9) can then be used to express C2 in terms of
V(R), the alternating potential of onme of the spheres or in terms of
the current supplied to the spherical conductors I = iQ)CeffV(R) where
Ceff is given by (11). The Poynting vector E x H may then be expressed

in terms of I, and the total radiated power P may be found by integration

over a very large sphere. The result is
L2
- 2
T / 3r 2 2)4
/ "@;ZC§;> we (w A‘*%v’) i (16)

and therefore the resistive component of the antenna impedance (the

radiation resistance) due to the radiation of electromagnetic waves is
e 2 L
_ 3 (o%-w2)*
Pn=(CT5,) Dwc 3w -q, an

The resistive component due to electron-acoustic waves is given by

s
fa= 2 Y [+ %= e

P

equation (14) as
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Equations (18) and (19) show that f;) is zero at the electron plasma
frequency and increases rapidly with frequency whereas f%’ is infinitely
high at the plasma frequency and decreases rapidly with frequency.

It is interesting to note that the expression (17) for 51: is the
same as the expression for the radiation resistance of a short antenna
of length D (whose capacity is entirely at its extremities) situated in

. 2,2

a medium with a dielectric constantéi(y‘CLwAb//. This is a significant
result in view of the fact that in the calculation of the series reactive
part of the antenna impedance the plasma can not be replaced by a medium

. 2/ .2
with a dielectric constanté(}‘@Nﬂb .

4. Application to Resonance Probes

The results of the previous section may be used to draw some
tentative but very important conclusions about the behavior of resonance
probes (Miyazaki et al, 1960). In such probes the change in the collected
direct current, caused by the application of a radio frequency voltage
is measured as a function of the radio frequency. 1It has been usually
accepted (Miyazaki et al, 1960) as an experimental fact that the change
in the collected current shows a resonant increase at the plasma frequency.

In this section the point of view is taken that the change in the
collected direct current is due to rectification cause by the non-linear
characteristic of a Langmuir probe. The amplitude of the radio frequency
variations in the collected current will be proportional to the
fluctuations n(R) in the number density (in a more accurate treatment

the fluctuation in temperature would also have to be taken into account
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but these would in any case be proportional to the fluctuations in

number density) and therefore equation (10) should really give the

¢
characteristics of a resonance probe. Using the parameters 2 and
[

equation (10) may be written in the form

s/ cp? 7
oY) = N O N R
MR =0 (R e (20T s, (19)

Equation (19) shows that n(R) becomes infinitely large at the frequency

for which
U' 8'/)‘/ ’ Y4
o ); /g et L 'J"‘__/i (20)
This shows that resonance occurs near the electron plasma frequency
(y/’\// ) only wheng‘<‘<j; for large values of (S‘ the resonance occurs
well below the plasma frequency. TFig. 2 shows (13 £L€/fiﬁvzé;)/’YL[7iL//V?7?%/
as a function of y/ for two values of Sl. Fig. 2 illustrates that
resonance occurs well below the plasma frequency when the probe radius
is much larger than the Debye length. The resonant frequency given by
(20) is the same as the previously discussed frequency where the impedance
of the probe vanishes.
The present analysis clearly leads to the conclusion that the
resonant response of the probe does not occur at the plasma frequency,
as laboratory and space experiments are alleged to show, but always
below the plasma frequency. TLarge errors could thus occur in rocket
investigations of electron concentration in which the resonant frequency
was identified with the plasma frequency, especially if the radius of the

probe were much larger than the Debye length. Fortunately a relatively
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small sphere (R = 1 cm) was used in the ionospheric experiments (Aono
et al, 1962) reported so far.

A discussion of the physical nature of this resonance sheds some
light on the reasons for the occurrence of the resonance well below the
plasma frequency. It is clear from equation (7) that the electric field
of the probe consists of two parts. One is simply a quasi-electrostatic
field which at short distances is the approximate form of the radiation
field for frequencies above the plasma frequency while the other is the
field associated with an electronacoustic wave which is evanescent at
frequencies below the plasma frequency.

At very low frequencies the quasi-electrostatic field becomes very
small compared to the field of the evanescent electron-acoustic wave.
This means that the alternating charge on the conducting sphere is
perfectly shielded by a suitable (continuous) modification of the sheath.
As the frequency is increased, the shielding becomes less perfect and
a potential C2/r appears outside the sheath. The present theory shows
that the outside field opposes in phase the field within the sheath.
With increasing frequency a situation is reached eventually where the
potential drop outside the sheath just balances the potential drop
inside so that no exciting voltage is required on the conductor; this
is the condition for resonance.

It is clear that with the same shielding factor '’ (defined as
the ratio of the charge in the sheath to the charge on the conductor)
the ratio f? of the potential drop outside to the potential drop inside

the sheath will increase as the ratio of the sphere radius R to the
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sheath thickness T increases. The relation 57=(7~2%T I may be shown

to apply if all the shielding charges are assumed to be on the sphere

r = R+ t. This is the physical explanation for the dependence of the
ratio of the resonant frequency to the plasma frequency on the ratio of
the Debye length to the probe radius.

An alternative, simpler but less quantitative, explanation is that
the resonant frequency of the probe is lowered by a tight coupling to
the medium. For a very small probe which is weakly coupled to the
medium, the resonant frequency will be nearly equal to the plasma
frequency. A larger probe has a lower resonant frequency because it

is more tightly coupled to the plasma.

5. Conclusions

The simple analysis of this paper leads to certain interesting and
significant results about the behavior of antennas in plasmas and about
the interpretation of observations with the aid of resonance probes in
plasmas. It is shown that resonance does not take place at the plasma
frequency and that previous measurements made by the resonant probe
method may have to be reinterpreted. In principle both the concentration
and the electron temperature could be determined by simultaneous
measurements of the resonant frequencies of two resonant probes of
different size. The same information could be obtained from a single
probe if an additional measurement (such as the additional direct
current at very low frequencies) was made besides the determination of
the resonant frequency. TImpedance measurements (not necessarily above

the plasma frequency) could also be used to determine the electron
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concentration and the electron temperature. It is to be remembered,
however, that the results of this paper must be regarded as merely
semi-quantitative in view of the oversimplified nature of the under-
lying assumptions.

The present treatment could, in principle, be further refined by
using a more sophisticated model of the sheath even if the use of a
scalar pressure term were retained. The treatment could also be applied,
in principle, to conductors which have other shapes than spherical.
The most severe shortcoming of the present approach is undoubtedly the
use of a scalar pressure term and it is to be hoped that a calculation
with the aid of the collisionless Boltzmann equation will be attempted
in the future. It is also to be hoped that the conclusions of the

present paper will be submitted soon to an experimental check.
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CAPTIONS

Fig. 1. The ratios of the real (interrupted line) and imaginary
(solid line) parts of the impedance to the magnitude of the free space
reactance as functions of the ratio V/ of the radio frequency to the

electron plasma frequency.

/e /
Fig. 2. The dimensionless quantity(é{[&ﬁqve;ﬁ%{ﬁj/Pﬁqahich is
proportional to the number density fluctuations 11 (R) produced by a
v

given RF voltage V(R), as a function of the ratio [” of the radio

frequency to the electron plasma frequency.
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